On a Subsidiary Elliptic Function pm (u, k)*

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SHAFER–FINK TYPE INEQUALITIES FOR THE ELLIPTIC FUNCTION sn(u|k) A. MCD. MERCER

The inequalities of Shafer and Fink, namely, 3x 2 + √ 1 − x2 sin −1(x) πx 2 + √ 1 − x2 , x ∈ [0, 1) are generalized to similar inequalities for the elliptic function sn(u|k) .

متن کامل

On a $k$-extension of the Nielsen's $beta$-Function

Motivated by the $k$-digamma function, we introduce a $k$-extension of the Nielsen's $beta$-function, and further study some properties and inequalities of the new function.

متن کامل

compactifications and function spaces on weighted semigruops

chapter one is devoted to a moderate discussion on preliminaries, according to our requirements. chapter two which is based on our work in (24) is devoted introducting weighted semigroups (s, w), and studying some famous function spaces on them, especially the relations between go (s, w) and other function speces are invesigated. in fact this chapter is a complement to (32). one of the main fea...

15 صفحه اول

On-AU = K (X)U ~ in 133

In this paper, we study the equation -Au = K ( x ) u 5 in R3 and provide a large class of positive functions K ( x ) for which we obtain infinitely many positive solutions which decay at infinity at the rate of Ix(-'.

متن کامل

Enhanced Gauge Symmetries on Elliptic K 3

We show that the geometry of K3 surfaces with singularities of type AD -E contains enough information to reconstruct a copy of the Lie algebra associated to the given Dynkin diagram. We apply this construction to explain the enhancement of symmetry in F and IIA theories compactified on singular K3's.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the London Mathematical Society

سال: 1883

ISSN: 0024-6115

DOI: 10.1112/plms/s1-15.1.219